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Abstract Optimal Power Flow problem is considered as minimization of quadratic
performance function subject to linear and quadratic equality/inequality constraints,
AC power flow equations specify the feasibility domain. Similar quadratic prob-
lems arise in discrete optimization, uncertainty analysis, physical applications. In
general they are nonconvex, nevertheless, demonstrate hidden convexity structure.
We investigate the “image convexity” property. That is, we consider the image of
the space of variables under quadratic map defined by power flow equations (the
feasibility domain). If the image is convex, then original optimization problem has
nice properties, for instance, it admits zero duality gap and convex optimization tools
can be applied. There are several classes of quadratic maps representing the image
convexity. We aim to discover similar structure and to obtain convexity or noncon-
vexity certificates for the individual quadratic transformation. We also provide the
numerical algorithms exploiting convex relaxation of quadratic mappings for check-
ing convexity. We address such problems as membership oracle and boundary oracle
for the quadratic image. Finally the results are illustrated through some examples of
3-bus systems, namely, we detect nonconvexity of them.

Keywords Power flow · Hidden convexity · Quadratic maps

1 Introduction

Various formulations of the Optimal Power Flow problem (OPF) can be found in
recent publications [1–3]; numerous references are given in the survey [4]. From
mathematical point of view most of them (if transformed into real space) can be
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described as optimization problems with quadratic (or partially linear) objective and
constraints. ThusOPF can be considered in the framework of quadratic programming
with quadratic constraints. The same class of optimization problems arises in discrete
optimization, uncertainty analysis, various physical applications. It iswell known that
such problems are typically nonconvex and NP-hard. However the special quadratic
structure often exhibits so called “hidden convexity” properties, see, e.g. [5, 6]. On
the other hand quadratic problems admit efficient techniques of convex relaxation,
see [7, 8]; for OPF problems convex relaxation was used in [1, 3]. In what follows we
treat OPF as particular case of quadratic optimization. Moreover we proceed from
optimization problems to more general setting of images of quadratic maps.

In Sect. 2 we formulate the problem of convexity of quadratic transformations and
refer to known results for particular classes of quadratic functions. Power Flow equa-
tions do not fit directly to any of the known classes, thus our approach is different —
we try to check convexity/nonconvexity of an individual quadratic map. Such certifi-
cates of convexity/nonconvexity will be provided in Sect. 3; we also develop efficient
algorithms to obtain the certificates. The algorithms exploit convex relaxation tech-
nique and so called “boundary oracle” for convex domains. Section4 contains results
on numerical simulation. Conclusions and directions for the futurework can be found
in final Sect. 5.

2 Convexity of Quadratic Transformations

We consider AC power flowmodel. The network is characterized by complex admit-
tance matrix

Y ∈ C
(N−1)×(N−1),

whereN is the total number of buses (including slack bus with fixed voltage magni-
tude and phase). Power injections defined byKirchhoff’s laws can be written through
matrix Y and complex voltages Vi :

si = Vi (YV )∗i , i = 1, . . . ,N − 1.

Typical OPF problem is to minimize linear or quadratic cost c(V ) subject to
quadratic constraints si ≤ si ≤ si . We treat all V ∈ C

N−1 feasible while the con-
straints are stated in the space of quadratic image of V . Introducing real vector
x = [Re(V )T , Im(V )T ]T active and reactive powers are real-valued quadratic func-
tions of x . Further we deal with quadratic transformations in the general setting.

We consider multidimensional quadratic mapping f : Rn → R
m of the form

f (x) = ( f1(x), f2(x), . . . , fm(x))
T

fi (x) = (Ai x, x) + 2(bi , x), i = 1, . . . ,m ≤ n,

then
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E = { f (x) : x ∈ R
n}

is the image of the space of variables x under this quadratic map. We do not assume
that matrices Ai are sign-definite; nevertheless E sometimes occur to be convex
(“hidden convexity” property). Let us mention some known results of this sort.

• For m = 2 and bi ≡ 0 E is convex. This is the pioneering result by Dines [9]. For
m = 2, bi �= 0 and c1A1 + c2A2 � 0 (the matrix combination is positive definite
for some c) E is convex as well [10].

• For m = 3 E is convex if there exists a positive-definite linear combination of
matrices A1, A2, A3 and bi ≡ 0. This is proved in [11] and in [10].

• If bi ≡ 0 and matrices Ai commute, then E is convex [12].
• If Ai have positive off-diagonal entries, then “positive part of E” is convex (i.e.

E + Rm+ is convex) [13].

Consider the image of a ball F = { f (x) : ||x || ≤ ρ}.
• For m = 2 and bi ≡ 0 F is convex [14].
• If matrix B with columns bi is nonsingular and ρ is small enough, then F is convex
for all m, n ≥ 2 (“small ball” theorem [15]).

There are some other classes of quadratic transformations with convex images, how-
ever typically E (or F) is nonconvex; numerous examples will be provided later.

3 Certificates of Convexity/Nonconvexity

We remind some known facts on convex relaxations for quadratic optimization and
on convex hull for quadratic image.

The idea of convex relaxations for quadratic problems goes back to [16]; recent
results and references can be found in [7, 8]. Similar ideas and technique give the
convex hull of the image set E , see also [17].

Notation For symmetric matrices 〈X,Y 〉 = trace(XY ), and X � 0 denotes nonneg-
ative definite matrix X .

Theorem 1 The convex hull for the feasibility set E is

G = conv(E) = {H(X) : X � 0, Xn+1,n+1 = 1},

where X = XT ∈ R
(n+1)×(n+1),

H(X) = (〈H1, X〉, 〈H2, X〉, . . . , 〈Hm, X〉)T
Hi =

(
Ai bi
bTi 0

)
.

Hencewe can provide simple sufficient conditions formembership oracle, i.e. check-
ing if a particular point y ∈ R

m is feasible (belongs to E). Indeed, it is necessary to
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have y ∈ G, that is to solve corresponding linear matrix inequality (LMI) [18]. Alter-
natively, introduce the variable c ∈ R

m and construct matrix A = ∑
ci Ai , vector

b = ∑
cibi and block matrix H(c) =

(
A b
bT −(c, y)

)
, then the sufficient condition

for y /∈ G has the form:

Theorem 2 If there exists c such that for a specified y

H(c) � 0,

then y is not feasible.

Indeed if the LMI is solvable, there exists the separating hyperplane, defined by its
normal c that strictly separates y and G = conv(E), hence y does not belong to E .
Now we can proceed to a nonconvexity certificate.

Theorem 3 Let m ≥ 3, n ≥ 3, bi �= 0, and for some c = (c1, c2, . . . , cm)T , the
matrix A = ∑

ci Ai � 0 has a simple zero eigenvalue Ae = 0, and for b = ∑
cibi

we have (b, e) = 0. Denote d = −A+b, xα = αe + d, f α = f (xα) = f 0 + f 1α +
f 2α2. If |( f 1, f 2)| < ‖ f 1‖ · ‖ f 2‖, then E is nonconvex.

Geometrically the condition implies that the linear function (c, f ) attains its min-
imum on E at points f α only. But parabola f α is nonconvex, thus the supporting
hyperplane touches E on a nonconvex set.

Now the main problem is to find c (if exists) which satisfies Theorem1 and
hence discovers nonconvexity of the feasible set. For this purpose let us construct so
called boundary oracle for G. For given y0 ∈ E and the arbitrary direction d ∈ R

m

the following Semidefinite Program (SDP) [18] with variables t ∈ R, X = XT ∈
R

(n+1)×(n+1) specifies the boundary point y0 + td of the convex hull:

max t (1)

H(X) = y0 + td

X � 0

Xn+1,n+1 = 1.

If we obtain rank (X) = 1 for the solution of (1) we claim that the obtained
boundary point is on the boundary of E . Otherwise, the boundary point of the convex
hull does not belong to E .

On the other hand the dual problem to (1) gives us normal vector c for the boundary
point:

min γ + (c, y0) (2)

(c, d) = −1

H =
( ∑

ci Ai
∑

cibi∑
cibTi γ

)
� 0
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This is SDP problem with variables c, γ.
Equipped with boundary oracle technique (which provides both a boundary point

ofG and the normal vector c in this point) we are able to generate vectors c to identify
nonconvexity as in Theorem1. Thus we arrive to

Algorithm

1. Take arbitrary x0 ∈ R
n , calculate y0 = f (x0) and fix some N .

2. Generate N random directions di on the unit sphere in Rm .
3. For every randomdirection di solve SDP (2). If the obtained c satisfies Theorem1,

we identifyed nonconvexity.

At the first glance, simpler approach can be applied. Take c ∈ R
m and minimize

(c, y) on G (given by lemma 1) if such minimum exists. If A = ∑
ci Ai � 0 the

minimum is unique and obtained at rank-1 matrix xxT , x = A−1b, b = ∑
cibi , and

x gives a boundary point of the feasibilty set E . However to identify nonconvexity
we should find c such that A is singular. The probability of this event is zero if we
sample c randomly. In our approach (when we generate directions d) the probability
of finding a boundary point on a “flat” part of the boundary of G (which correspond
to nonconvex E) is positive. In simulation results nonconvexity was identified in all
examples, where it has been recognized by other methods.

To conclude it is the strong support of the convexity assumption if our algorithm
does not meet nonconvexity after large number of iterations N for various y0.

4 Numerical Results

In this section we apply the proposed routine for several test maps. The first one
is artificially constructed while the others describe power flow feasibility region
for 3-bus networks. Starting form a specified feasible y0 and N = 104 we run the
algorithm to obtain vector c such that the supporting hyperplane (c, y) touches the
image y(x) in more than one point and thus certifies its nonconvexity. We distinguish
nonconvexities discovered by different vectors c and examine the portion of random
directions d resulted in every c. The results are summarized in Table1.

Table 1 Numerical results for discovering nonconvexity of test mappings

Source Map Number of
nonconvexities

Portion of d’s per
nonconvexity

Artificial R
3 → R

3 3 0.04 0.13 0.03

[19] R
3 → R

3 1 0.02

[20] C
2 → R

4 1 0.06

[21] C
2 → R

4 2 <0.001 <0.001
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Artificial system We start with the artificially constructed quadratic mapping R
3 →

R
3 with

A1 =
⎛
⎝
1 1 1
1 2 0
1 0 2

⎞
⎠ , A2 =

⎛
⎝

3 −1 0
−1 0 −1
0 −1 1

⎞
⎠ , A3 = I

b1 = (
1 1 1

)T
, b2 = (

1 0 −1
)T

, b3 = (
0 0 0

)T
.

Note that A1 is positive semidefinite thus c1 = (1, 0, 0)T specifies the supporting
hyperplane (c, y) touching the image in more than one point. For this map we obtain
two other critical c2 = (1, 0.5,−1)T and c3 = (1, 4.75, 1.38)T . For y0 = (0, 1, 1)T

the portion for every c is given in Table1. We analytically justify that there is no
other c specifying nonconvexity for this map and plot several 2-D sections of the
image in R

3 (Fig. 1). For fixed 0 ≤ y3 ≤ 1/3 the section appears to be convex and
for y3 = 4 we visualize all three nonconvexities.

Constant power loads [19] This example is borrowed form [19],where feasible points
of E are addressed as equilibria of system with constant power loads. The map of
interest has the form:

P1(x) = x21 − 0.5x1x2 + x1x3 − 1.5x1

P2(x) = x22 − 0.5x1x2 − x2x3 + 0.5x2

P3(x) = x23 − 2εx3(x1 + x2) − x3, ε = 0.01.

For P0 = (0.5, 0.5, 0.25)T we obtain a single c = (1, 2.9021, 0.7329)T identify-
ing nonconvexity. It means that the supporting parabola

f α =
⎛
⎝

−0.5442
0.0022

−0.0339

⎞
⎠ + α

⎛
⎝

0.5043
0.0400

−0.8463

⎞
⎠ + α2

⎛
⎝

−0.0022
−0.1991
0.7912

⎞
⎠

provides boundary points for the image P(x), x ∈ R
3 but the convex combination

of two boundary points λ f α1 + (1 − λ) f α2 is infeasible for 0 < α < 1, f α1 �= f α2 .

3-bus [20] Consider tree unbalanced 3-bus system (1 slack, 2 PQ-buses) with the
admittance matrix

Y =
⎛
⎝

−1 1 0
1 −2 − i 1 + i
0 1 + i −1 − i

⎞
⎠ .

The feasibility region in the space of P2, Q2, P3, Q3 is known to be nonconvex [20].
Here Pi and Qi denote active and reactive power at the i-th bus,
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Fig. 1 Two sections of the
feasibility domain: first we
fix y3 = 1/3 and obtain
convex section, then for
y3 = 4 the section is
nonconvex

y = (P2, Q2, P3, Q3)
T . For y0 = (0, 0, 1, 1)T our numerical routing obtains the sin-

gle c generating nonconvexity for approximately 6% of random directions.

3-bus [21] This example of 3-bus cycle network with slack, PV and PQ-bus is bor-
rowed from [21] (Fig. 2).

Power flow equations take the form
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Fig. 2 Three-bus system

P1 = xT

⎛
⎜⎜⎝

3.7 −0.6 0 −0.8
−0.6 0 0.8 0
0 0.8 3.7 −0.6

−0.8 0 −0.6 0

⎞
⎟⎟⎠ x+

+ 2((−1.25, 0, 1.25, 0)T , x),

V1 = x21 + x23 ,

P2 = xT

⎛
⎜⎜⎝

0 −0.6 0 0.8
−0.6 3.6 −0.8 0
0 −0.8 0 −0.6
0.8 0 −0.6 3.6

⎞
⎟⎟⎠ x+

+ 2((0,−1.2, 0, 1.6)T , x),

Q2 = xT

⎛
⎜⎜⎝

0 −0.8 0 −0.6
−0.8 4.8 0.6 0
0 0.6 0 −0.8

−0.6 0 −0.8 4.8

⎞
⎟⎟⎠ x+

+ 2((0,−1.6, 0,−1.2)T , x).

We remind that x = (ReV1, ReV2, ImV1, ImV2)
T and V3 = 1 for slack bus. Starting

at the given operation regime P1 = 2, V 2
1 = 1.21, P2 = −0.7, Q2 = −0.3 we obtain

at least two vectors c identifying nonconvexity but it requires more computational
effort than in previous examples. Although our routine is capable to catch noncon-
vexity with probability one we are not sure that obtained vectors describe all the
nonconvexities for this system.

The example may look artificial since the line resistances are as high as the
reactances. We run our algorithm for the five times larger line reactances to model
transmission grid and still discover nonconvexity of the image.
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Remark We do not propose any routine to solve power flow equation, and we do not
pretend to compete with any power flow solvers, neither DC equations nor iterative
methods. Our method is focused on the certification and numerical description of
nonconvexities of the image that is the reason for inexactness of convex relaxation
for OPF.

5 Conclusions and Future Work

The paper addresses power flow analysis in the framework of quadratic transfor-
mations geometry. We provide some conditions which guarantee convexity of a
quadratic image and numerical tools to identify nonconvexity. Simulation confirms
that the technique works for low-dimensional examples. We plan to apply the analy-
sis for medium-dimensional and large-dimensional problems in future. For instance
IEEE-14-bus test is one of the first candidates.

The key question is how to deal if nonconvexity is identfied. There are some
promising ideas for this case, for instance, based on [22] cutting plane approach
can be introduced to specify convex parts of the feasibility region. The proposed
algorithm could be potentially improved by finding appropriate y0, incorporating
other algorithms for boundary walk, efficient algorithms for solving arising SDP. All
the issues mentioned above establish the future research plan.
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